import numpy as np import matplotlib.pyplot as plt
np.random.seed(19680801) number_of_bins = 20
# An example of three data sets to compare number_of_data_points = 387 labels = ["A", "B", "C"] data_sets = [np.random.normal(0, 1, number_of_data_points), np.random.normal(6, 1, number_of_data_points), np.random.normal(-3, 1, number_of_data_points)]
# Computed quantities to aid plotting hist_range = (np.min(data_sets), np.max(data_sets)) binned_data_sets = [ np.histogram(d, range=hist_range, bins=number_of_bins)[0] for d in data_sets ] binned_maximums = np.max(binned_data_sets, axis=1) x_locations = np.arange(0, sum(binned_maximums), np.max(binned_maximums))
# The bin_edges are the same for all of the histograms bin_edges = np.linspace(hist_range[0], hist_range[1], number_of_bins + 1) centers = 0.5 * (bin_edges + np.roll(bin_edges, 1))[:-1] heights = np.diff(bin_edges)
# Cycle through and plot each histogram fig, ax = plt.subplots() for x_loc, binned_data inzip(x_locations, binned_data_sets): lefts = x_loc - 0.5 * binned_data ax.barh(centers, binned_data, height=heights, left=lefts)